Reteaching 2-6

Families of Functions

Horizontal and Vertical Translations

If *h* and *k* are positive numbers, then

g(x) = f(x) + k shifts the graph of f(x) up k units.

g(x) = f(x) - k shifts the graph of f(x) **down** k units.

g(x) = f(x + h) shifts the graph of f(x) left h units.

g(x) = f(x - h) shifts the graph of f(x) right h units.

Problem

How can you represent each translation of y = |x| graphically?

1. a. $g(x) = x - 2$	Shift the graph of	$f(\mathbf{x}) = \mathbf{x} $	down 2 units.
b. $h(x) = x + 1 $	Shift the graph of	$f(\mathbf{x}) = \mathbf{x} $	left 1 unit.

2. a. $g(x) = x - 3 + 1$	Shift the graph of $f(x) = x $ right 3 units and up 1 unit.
b. $h(x) = x + 2 - 3$	Shift the graph of $f(x) = x $ left 2 units

and down 3 units.

Exercises

Identify the type of translation of f(x) = |x|.

1. $g(x) = x-2 $	2. $g(x) = x + 1$
3. $g(x) = x - 3$	4. $g(x) = x+3 $

Graph each translation of f(x) = |x|.

5.
$$g(x) = |x-1| - 5$$
 6. $g(x) = |x+4| + 2$

Class Date ____

Reteaching (continued) 2-6 Families of Functions

Reflection, Stretching, and Compression

If *h* and *k* are positive numbers, then

g(x) = -f(x) reflects the graph of f(x) in the x-axis.

g(x) = f(-x) reflects the graph of f(x) in the y-axis.

g(x) = af(x), a > 1, is a vertical **stretch** of the graph of f(x).

g(x) = af(x), 0 < a < 1, is a vertical **compression** the graph of f(x).

Problem

What transformations change the graph of f(x) to g(x)?

g(x) = -3(5x)f(x) = 5x

There are two transformations.

First transformation: The graph of y = 3(5x) is the graph of f(x) = 5xstretched vertically by a factor of 3 because a = 3 and a > 1.

Second transformation: The graph of g(x) = -3(5x) is the graph of y =3f(5x) reflected in the x-axis because the sign of g(x) has changed.

So, the graph of g(x) is the graph of f(x) stretched vertically by a factor of 3 and reflected over the x-axis.

Exercises

Describe the transformations of f(x) that produce g(x).

7.
$$f(x) = -5x$$

 $g(x) = x$
8. $f(x) = x$
 $g(x) = \frac{1}{4}x + 3$

Graph f(x) and g(x) on the same coordinate plane.

9.
$$f(x) = 2x$$
 10. $f(x) = x^2$

$$g(x) = -(2x - 2)$$
 $g(x) = 2(x^2 - 3)$

